Metabolic Response of Cultivated Bivalve Mollusks to Acidification in the Black Sea

O. Yu. Vialova

A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Sevastopol, Russia

e-mail: vyalova07@gmail.com

Abstract

The Black Sea, which is potentially the largest sink of CO2 among the seas of the Atlantic Ocean, has been experiencing a decrease in pH over the last decades. Information on the acidification of the Black Sea and its impact on the marine biosystem is scarce. Based on literature and our own experimental data, we analyse the effect of low seawater pH values on the energy metabolism of the main commercial bivalve molluscs – the mussel Mytilus galloprovincialis and the oyster Magallana gigas. These species showed the ability to adapt energy metabolism levels over a wide pH range, from 7.0 to 8.1. When the pH was lowered by 0.1 unit, the oxygen consumption of mussels decreased on average by 10–20 % in the pH range 7.5–8.2. At pH 7.2–7.5, the respiration rate of M. galloprovincialis did not change and remained at 9.15–9.38 µg O2/(g dry tissue·h) and then dropped to 6.8 µg O2/(g dry tissue·h) at pH 7.0. In M. gigas, the oxygen consumption rate decreased uniformly: on average by 10–15 % for each 0.1 unit of pH change, up to pH value of 7.2. At pH 7.0–7.2, aerobic respiration of oysters was recorded at a minimum level of 4.6–4.8 µg O2/(g dry tissue·h).

Keywords

mussel Mytilus galloprovincialis, oyster Magallana gigas, respiration, pH, acidification, Black Sea

Acknowledgments

The work was carried out within the framework of the state budget topic of IBSS RAS no. 121041400077-1.

For citation

Vialova, O.Yu., 2023. Metabolic Response of Cultivated Bivalve Mollusks to Acidification in the Black Sea. Ecological Safety of Coastal and Shelf Zones of Sea, (4), pp. 73–86.

References

  1. Bates, N.R., Astor, Y.M., Church, M.J., Currie, K., Dore, J.E., González-Dávila, M., Lorenzoni, L., Muller-Karger, F., Olafsson, J. et al., 2014. A Time-Series View of Changing Ocean Chemistry due to Ocean Uptake of Anthropogenic CO2 and Ocean Acidification. Oceanography, 27(1), pp. 126–141. doi.org/10.5670/oceanog.2014.16
  2. Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Pean, C., Chen, Y., Goldfarb, L., Gomis, M.I., Matthews, J.B.R. et al., eds., 2022. Climate Change 2021. The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2391 p. doi:10.1017/9781009157896
  3. Fowler, S.W., 2008. Ocean Acidification Issues in the Mediterranean and Black Seas: Present Status and Future Perspectives. In: Briand, F., ed., 2008. Impacts of Acidifica-tion on Biological, Chemical and Physical Systems in the Mediterranean and Black Seas. CIESM Workshop Monographs. No. 36. Monaco: CIESM, pp. 23–30.
  4. Polonsky, A.B. and Grebneva, E.A., 2019. The Spatiotemporal Variability of pH in Waters of the Black Sea. Doklady Earth Sciences, 486(2), pp. 669–674. https://doi.org/10.1134/S1028334X19060072
  5. Khoruzhii, D.S. and Konovalov, S.K., 2014. Diurnal and inter-diurnal variations of contents of carbon dioxide and dissolved inorganic carbon in the Black Sea coastal waters. Morskoy Gidrofizicheskiy Zhurnal, (1), pp. 28–43 (in Russian).
  6. Elge, M., 2021. Analysis of Black Sea Ocean Acidification. International Journal of Environment and Geoinformatics, 8(4), pp. 467–474. doi:10.30897/ijegeo.857893
  7. Savenko, A.V. and Pokrovsky, O.S., 2022. Transformation of the Major and Trace Element Composition of Dissolved Matter Runoff in the Mouths of Medium and Small Rivers of Russia's Black Sea Coast. Oceanology, 62(3), pp. 324–345. doi:org/10.1134/s0001437022030110
  8. Grebneva, E.A. and Polonsky, A.B., 2021. Decomposition of the Time Series of the pH Values of the Surface Water of the Deep Black Sea according to Archival Data of the Second Half of the XXth Century. Monitoring Systems of Environment, 44(2), pp. 29–38. doi:10.33075/2220-5861-2021-2-29-38 (in Russian).
  9. Khoruzhii, D.S., 2016. Variability of Equilibrium Partial Pressure of Carbon Dioxide (pCO2) and Concentration of Dissolved Inorganic Carbon (TCO2) in the Black Sea Coastal Waters in 2010–2014. Physical Oceanography, (4), pp. 34–46. doi:10.22449/1573-160X-2016-4-34-46
  10. Hurd, C.L., Cornwall, C.E., Currie, K., Hepburn, C.D., McGraw, C.M., Hunter, K.A. and Boyd, P.W., 2011. Metabolically-Induced pH Fluctuations by some Coastal Calcifiers Exceed Projected 22nd Century Ocean Acidification: a Mechanism for Differential Susceptibility? Global Change Biology, 17(10), pp. 3254–3262. doi:10.1111/j.1365-2486.2011.02473.x
  11. Torres, O., Kwiatkowski, L., Sutton, A.J., Dorey, N. and Orr, J.C., 2021. Characte-rizing Mean and Extreme Diurnal Variability of Ocean CO2 System Variables Across Marine Environments. Geophysical Research Letters, 48(5), pp. 1–12. doi.org/10.1029/2020GL090228
  12. Gazeau, F., Parker, L.M., Comeau, S., Gattuso, J.-P., O’Connor, W.A., Martin, S., Pörtner, H.-O. and Ross, P.M., 2013. Impacts of Ocean Acidification on Marine Shelled Molluscs. Marine Biology, 160(8), pp. 2207–2245. doi.org/10.1007/s00227-013-2219-3
  13. Kroeker, K.J., Kordas, R.L., Crim, R., Hendriks, I.E., Ramajo, L., Singh, G.S., Duarte, C.M. and Gattuso, J.-P., 2013. Impacts of Ocean Acidification on Marine Organisms: Quantifying Sensitivities and Interaction with Warming. Global Change Biology, 19(6), pp. 1884–1896. doi:10.1111/gcb.12179
  14. Doney, S.C., Busch, D.S., Cooley, S.R. and Kroeker, K.J., 2020. The Impacts of Ocean Acidification on Marine Ecosystems and Reliant Human Communities. Annual Review of Environment and Resources, 45, pp. 83–112. doi.org/10.1146/annurev-environ-012320-083019
  15. Kelaher, B.P., Mamo, L.T., Provost, E., Litchfield, S.G., Giles, A. and Butcherine, P., 2022. Influence of Ocean Warming and Acidification on Habitat-Forming Coralline Algae and their Associated Molluscan Assemblages. Global Ecology and Conservation, 35, e02081. doi.org/10.1016/j.gecco.2022.e02081
  16. Leung, J.Y.S., Zhang, S., and Connell, S.D., 2022. Ocean Acidification Really a Threat to Marine Calcifiers? A Systematic Review and Meta-Analysis of 980+ Studies Spanning Two Decades. Small, 18(35), 2107407. doi:10.1002/smll.202107407
  17. Townhill, B.L., Artioli, Y., Pinnegar, J.K. and Birchenough, S.N.R., 2022. Exposure of Commercially Exploited Shellfish to Changing pH Levels: How to Scale-Up Experimental Evidence to Regional Impacts. ICES Journal of Marine Science, 79(9), pp. 2362–2372. doi:10.1093/icesjms/fsac177
  18. Ross, P.M., Parker, L., O’Connor, W.A. and Bailey, E.A., 2011. The Impact of Ocean Acidification on Reproduction, Early Development and Settlement of Marine Organism. Water. 2011, 3(4), pp. 1005–1030. doi:10.3390/w3041005
  19. Bechmann, R.K., Taban, I.C., Westerlund, S., Godal, B.F., Arnberg, M., Vingen, S., Ingvarsdottir, A. and Baussant, T., 2011. Effects of Ocean Acidification on Early Life Stages of Shrimp (Pandalus borealis) and Mussel (Mytilus edulis). Journal of Toxicology and Environmental Health, 74(7–9), pp. 424–438, doi:10.1080/15287394.2011.550460
  20. Thomsen, J., Casties, I., Pansch, C., Kortzinger, A. annd Melzner, F., 2012. Food Availability Outweighs Ocean Acidification Effects in Juvenile Mytilus edulis: Laboratory and Field Experiments. Global Change Biology, 19(4), pp. 1017–1027. doi:10.1111/gcb.12109
  21. Parker, L.M., Ross, P.M., O’Connor, W.A., Portner, H.O., Scanes, E. and Wright, J.M., 2013. Predicting the Response of Molluscs to the Impact of Ocean Acidification. Biology, 2(2), pp. 651–692. doi:10.3390/biology2020651
  22. Duarte, C., Navarro, J.M., Acuna, K., Torres, R., Manriquez, P.H., Lardies, M.A., Vargas, C.A., Lagos, N.A. and Aguilera, V., 2014. Combined Effects of Temperature and Ocean Acidification on the Juvenile Individuals of the Mussel Mytilius chilensis. Journal of Sea Research, 85, pp. 308–314. doi:10.1016/j.seares.2013.06.002
  23. Vargas, C.A., Lagos, N.A., Lardies, M.A., Duarte, C., Manriquez, P.H., Aguilera, V.M., Broitman, B., Widdicombe, S. and Dupont, S., 2017. Species-Specific Responses to Ocean Acidification Should Account for Local Adaptation and Adaptive Plasticity. Nature Ecology and Evolution, 1, 0084, pp. 1–7. doi:10.1038/s41559-017-0084
  24. Wang, X., Shang, Y., Kong, H., Hu, M., Yang, J., Deng, Y. and Wang, Y., 2020. Combined Effects of Ocean Acidification and Hypoxia on the Early Development of the Thick Shell Mussel Mytilus coruscus. Helgoland Marine Research, 74(3), pp. 1–9. doi.org/10.1186/s10152-020-0535-9
  25. Vargas, C.A., Cuevas, L.A., Broitman, B.R., San Martin, V.A., Lagos, N.A., Gaitan-Espitia, J.D. and Dupont, S., 2022. Upper Environmental pCO2 Drives Sensitivity to Ocean Acidification in Marine Invertebrates. Nature Climate Change, 12, pp. 200–207. doi:10.1038/s41558-021-01269-2
  26. Zhao, X., Guo, C., Zhumei, C., Wang, Y., Wang, X., Chai, X., Wu, H., Liu, G., 2017. Ocean Acidification Decreases Mussel Byssal Attachment Strength and Induces Molecular Byssal Responses. Marine Ecology Progress Series, 565, pp. 67–77. doi:10.3354/meps11992
  27. Fitzer, S.C., Vittert, L., Bowman, A., Kamenos, N.A., Phoenix, V.R. and Cusack, M., 2015. Ocean Acidification and Temperature Increase Impact Mussel Shell Shape and Thickness: Problematic for Protection? Ecology and Evolution, 5(21), pp. 4875–4884. doi:10.1002/ece3.1756
  28. Michaelidis, B., Ouzounis, C., Paleras, A. and Portner, H.O., 2005. Effects of Long-Term Moderate Hypercapnia on Acid-Base Balance and Growth Rate in Marine Mussels Mytilus galloprovincialis. Marine Ecology Progress Series, 293, pp. 109–118. doi:10.3354/meps293109
  29. Lannig, G., Eilers, S., Portner, H.O., Sokolova, I.M. and Bock, C., 2010. Impact of Ocean Acidification on Energy Metabolism of Oyster, Crassostrea gigas – Changes in Metabolic Pathways and Thermal Response. Marine Drugs, 8, pp. 2318–2339. doi:10.3390/md8082318
  30. Lewis, C., Ellis, R.P., Vernon, E., Elliot, K., Newbatt, S., Wilson, R.W., 2016. Ocean Acidification Increases Copper Toxicity Differentially in Two Key Marine Inverteb-rates with Distinct Acid-Base Responses. Scientific Reports, 6, 21554, pp. 1–10. doi:10.1038/srep21554
  31. Thomsen, J. and Melzner, F., 2010. Moderate Seawater Acidification does not Elicit Long-Term Metabolic Depression in the Blue Mussel Mytilus edulis. Marine Biology, 157, pp. 2667–2676. doi:10.1007/s00227-010-1527-0
  32. Fernández-Reiriz, J., Range, P., Alvarez-Saldago, X.A., Labarta, U., 2011. Physio-logical Energetics of Juvenile Clams Ruditapes decussatus in a High CO2 Coastal Ocean. Marine Ecology Progress Series, 433, pp. 97–105. doi:10.3354/meps09062
  33. Liu, W. and He, M., 2012. Effects of Ocean Acidification on the Metabolic Rates of Three Species of Bivalve from Southern Coast of China. Chinese Journal of Oceanology and Limnology, 30(2), pp. 206–211. doi:10.1007/s00343-012-1067-1
  34. Clements, J.C. and George, M.N., 2022. Ocean Acidification and Bivalve Byssus: Explaining Variable Responses Using Meta-Analysis. Marine Ecology Progress Series, 694, pp. 89–103. doi.org/10.3354/meps14101
  35. Knights, A.M., Norton, M.J., Lemasson, A.J., Stephen, N., 2020. Ocean Acidification Mitigates the Negative Effects of Increased Sea Temperatures on the Biomineralization and Crystalline Ultrastructure of Mytilus. Frontiers in Marine Science, 7, 567228. doi:10.3389/fmars.2020.567228
  36. Lagos, N.A., Benítez, S., Duarte, C., Lardies, M.A., Broitman, B.R., Tapia, C., Tapia, P., Widdicombe, S. and Vargas, C.A., 2016. Effects of Temperature and Ocean Acidifica-tion on Shell Characteristics of Argopecten purpuratus: Implications for Scallop Aquaculture in an Upwelling-Influenced Area. Aquaculture environment interactions, 8, pp. 357−370. doi:10.3354/aei00183
  37. Lardies, M.A., Benitez, S., Osores, S., Vargas, C.A., Duarte, C., Lohrmann, K.B. and Lagos, N.A., 2017. Physiological and Histopathological Impacts of Increased Carbon Dioxide and Temperature on the Scallops Argopecten purpuratus Cultured under Upwelling Influences in Northern Chile. Aquaculture, 479, pp. 455−466. doi:10.1016/j.aquaculture.2017.06.008
  38. Clements, J.C., Hicks, C., Tremblay, R., Ccomeau, L.A., 2018. Elevated Seawater Temperature, not pCO2, Negatively Affects Post-Spawning Adult Mussels (Mytilus edulis) under Food Limitation. Conservation Physiology, 6(1), cox078. doi:10.1093/conphys/cox078
  39. De Wit, P., Durland, E., Ventura, A. and Langdon, C.J., 2018. Gene Expression Correlated with Delay in Shell Formation in Larval Pacific Oysters (Crassostrea gigas) Exposed to Experimental Ocean Acidification Provides Insights into Shell Formation Mechanisms. BMC Genomics, 19(1), pp. 160−175. doi:10.1186/s12864-018-4519-y
  40. Fernández-Reiriz, M.J., Range, P., Alvarez-Saldago, X.A., Espinosa, J. and Labarta, U., 2012. Tolerance of Juvenile Mytilus galloprovincialis to Experimental Seawater Acidification. Marine Ecology Progress Series, 454, pp. 65−74. doi:10.3354/meps09660
  41. Gazeau, F., Alliouane, S., Bock, C., Bramanti, L., Lopez Correa, M., Gentile, M., Hirse, T., Portner, H.O. and Ziveri, P., 2014. Impact of Ocean Acidification and Warming on the Mediterranean Mussel (Mytilus galloprovincialis). Frontiers in Marine Science, 1, 62. doi.org/10.3389/fmars.2014.00062
  42. Hu, M., Lin, D., Shang, Y., Hu, Y., Lu, W., Huang, X., Ning, K., Chen, Y. and Wang, Y., 2017. CO2-Induced pH Reduction Increases Physiological Toxicity of Nano-TiO2 in the Mussel Mytilus coruscus. Scientific Reports, 7, 40015. doi:10.1038/srep40015
  43. Benitez, S., Lagos, N.A., Osores, S., Opitz, T., Duarte, C., Navarro, J.M. and Lardies, M.A., 2018. High pCO2 Levels Affect Metabolic Rate, but not Feeding Behavior and Fitness, of Farmed Giant Mussel Choromytilus chorus. Aquaculture Environment Interactions, 10, pp. 267–278. doi.org/10.3354/aei00271
  44. Duarte, C., Navarro, J.M., Quijon, P.A., Loncon, D., Torres, R., Manriquez, P.H., Lardies, M.A., Vargas, C.A. and Lagos, N.A., 2018. The Energetic Physiology of Juvenile Mussels, Mytilus chilensis (Hupe): The Prevalent Role of Salinity under Current and Predicted pCO2 Scenarios. Environmental Pollution, 242, Part A, pp. 156–163. doi:10.1016/j.envpol.2018.06.053
  45. Khoruzhii, D.S., 2018. Variability of the CO2 Flux on the Water–Atmoshpere Interfaca 2 in the Black Sea Coastal Waters on Various Time Scales in 2010–2014. Physical Oceanography, 25(5), pp. 410–411. doi:10.22449/1573-160X-2018-4-401-411
  46. Munari, M., Matozzo, V., Rieldi, V., Pastore, P., Badocco, D. and Marin, M.G., 2020. EAT BREATHE EXCRETE REPEAT: Physiological Responses of the Mussel Mytilus galloprovincialis to Diclofenac and Ocean Acidification. Journal of Marine Science and Engineering, 8(11), 907. doi.org/10.3390/jmse8110907
  47. George, M.N., O’Donnel, M.J., Concodello, M. and Carrington, E., 2022. Mussels Repair Shell Damage Despite Limitations Imposed by Ocean Acidification. Journal of Marine Science and Engineering, 10(3), pp. 359. doi.org/10.3390/jmse10030359
  48. Tunnicliffe, V., Davies, K.T.A., Butterfield, D.A., Embley, R.W., Rose, J.M. and Chadwick Jr., W.W., 2009. Survival of Mussels in Extremely Acidic Waters on a Sub-marine Volcano. Nature Geoscience, 2, pp. 344–348. https://doi.org/10.1038/ngeo500
  49. Bitter, M.C., Kapsenberg, L., Silliman, K., Gattuso, J.-P. and Pfister, C.A., 2021. Magnitude and Predictability of pH Fluctuations Shape Plastic Responses to Ocean Acidification. The American Naturalist, 197(4), pp. 486–501. doi:10.1086/712930
  50. Willson, L.L. and Burnett, L.E., 2000. Whole Animal and Gill Tissue Oxygen Uptake in the Eastern Oyster, Crassostrea virginica: Effect of Hypoxia, Hypercapnia, Air Exposure, and Infection with the Protozoan Parasite Perkinsus marinus. Journal Experimental Marine Biology and Ecology, 246, pp. 223–240. doi:10.1016/S0022-0981(99)00183-5
  51. Jiang, W., Wang, X., Rastrick, S.P.S., Wang, J., Zhang, Y., Strand, Ø., Fang, J. and Jiang, Z., 2021. Effects of Elevated pCO2 on the Physiological Energetics of Pacific Oyster, Crassostrea gigas. ICES Journal of Marine Science, 78(7), pp. 2579–2590. doi:10.1093/icesjms/fsab139
  52. Bednaršek, N., Beck, M.W., Pelletier, G., Applebaum, S.L., Feely, R.A., Butler, R., Byrne, M., Peabody, B., Davis, J. and Štrus, J., 2022. Natural Analogues in pH Variability and Predictability Across the Coastal Pacific Estuaries: Extrapolation of the Increased Oyster Dissolution under Increased pH Amplitude and low Predictability Related to Ocean Acidification. Environmental Science and Technology, 56, pp. 9015−9028. doi:10.1021/acs.est.2c00010
  53. Zuñiga-Soto, N., Pinto-Borguero, I., Quevedo, C. and Aguilera, F., 2023. Secretory and Transcriptomic Responses of Mantle Cells to Low pH in the Pacific Oyster (Crassostrea gigas). Frontiers in Marine Science, 10. doi:10.3389/fmars.2023.1156831
  54. Clements, J.C., Carver, C.E., Mallet, M.A., Comeau, L.A. and Mallet, A.L., 2021. CO2-Induced Low pH in an Eastern Oyster (Crassostrea virginica) Hatchery Positively Affects Reproductive Development and Larval Survival but Negatively Affects Larval Shape and Size, with no Intergenerational Linkages. ICES Journal of Marine Science, 78(1), pp. 349–359. doi:10.1093/icesjms/fsaa089
  55. Kozlova, G.V. and Gordienko, N.A., 2021. Infuence of Organochlorine Compounds on Respiratory Intensity and Glycogen Content in Mussels in the Kerch Strait. Bulletin of the Kerch State Marine Technological University, (4), pp. 46–58. doi:10.47404/2619-0605_2021_4_46 (in Russian).

Full text

English version (PDF)

Russian version (PDF)