Numerical Modelling of RedOx Condition Dynamics at the Water-Sediment Interface in Sevastopol Bay

Yu. S. Gurova1,*, E. V. Yakushev2, 3, A. V. Berezina2, 3, M. O. Novikov2, K. I. Gurov1, N. A. Orekhova1

1 Marine Hydrophysical Institute of RAS, Sevastopol, Russia

2 Shirshov Institute of Oceanology RAS, Moscow, Russia

3 Norwegian Institute for Water Research, Oslo, Norway

* e-mail: kurinnaya-jul@yandex.ru

Abstract

The paper aims at assessing the variability of characteristics of redox conditions in the water column and the surface layer of sediments under changing anthropogenic load using in situ observational data and results of numerical modelling (the case of Sevastopol Bay). A comprehensive analysis is carried out of the chemical characteristics of the water column and pore water as well as geochemical characteristics of the bottom sediments. It is confirmed that there is the previously determined violation of the natural hydrochemical regime due to phytoplankton blooms in summer and the location of a large amount of stormwater and municipal wastewater in the bay. Despite the saturation of waters with oxygen in the bottom layer (94–113 % sat.), suboxic conditions are registered in the surface layer of bottom sediments. This is explained by predominance of the fine-grained fraction and high content of organic carbon. Mathematical calculations were performed using the one-dimensional benthic-pelagic Bottom RedOx Model (BROM). The numerical modelling results were validated using in situ observational data. The results showed that the model reproduces the natural seasonal variations of hydrochemical parameters associated with phytoplankton blooms, the occurrence of high concentrations of organic matter and its oxidation by the dissolved oxygen. Two numerical experiments with decreased and increased concentrations of organic matter were conducted to assess the effects of varying amounts of the organic matter entering the bay. It was found that the increased load on the bay results in a decrease in the oxygen concentration (up to 12 µM) and the development of anaerobic conditions in the bottom layer of water. Reduced organic matter input promotes aerobic conditions in the water column and in the bottom water layer. However, for bottom sediments, such a reduction in the load is not sufficient given the level of excess organic matter accumulated in them. The pore waters still consume oxygen and nitrates heavily and produce reduced forms of iron and manganese.

Keywords

bottom sediments, pore waters, oxygen, organic carbon, modelling, Black Sea, Sevastopol Bay, BROM model

Acknowledgments

The work was carried out under state assignment no. FNNN-2021-0005 “Coastal research” of Marine Hydrophysical Institute and state assignment no. FMWE-2021-0001 of Shirshov Institute of Oceanology RAS; as well as funded by grants no. 20-35-90103 of the RFBR and no. 21-17-00191 of the RSF. The authors are grateful to A. I. Kubryakov, Dr.Sci. (Phys.-Math.), for the provision of calculation results obtained using the POM model.

For citation

Gurova, Yu.S., Yakushev, E.V., Berezina, A.V., Novikov, M.O., Gurov, K.I. and Orekhova, N.A., 2023. Numerical Modelling of RedOx Condition Dynamics at the Water-Sediment Interface in Sevastopol Bay. Ecological Safety of Coastal and Shelf Zones of Sea, (2), pp. 71–90. doi:10.29039/2413-5577-2023-2-71-90

DOI

10.29039/2413-5577-2023-2-71-90

References

  1. Bryantsev, V.A., Litvinenko, N.M. and Sebakh, L.K., 1997. Anthropogenic Impacts on the Black Sea Ecosystem (Results of YugNIRO Nature Protective Studies for the Last Decade). In: YugNIRO, 1997. Proceedings of the Southern Scientific Research Institute of Marine Fisheries & Oceanography. Kerch: YugNIRO Publishers. Vol. 43, pp. 16–27 (in Russian).
  2. Orekhova, N.A. and Konovalov, S.K., 2018. Oxygen and Sulfides in Bottom Sediments of the Coastal Sevastopol Region of Crimea. Oceanology, 58(5), pp. 679–688. https://doi.org/10.1134/S0001437018050107
  3. Meysman, F.J.R., Middelburg, J.J., Herman, P.M.J. and Heip, C.H.R., 2003. Reactive Transport in Surface Sediments. II. Media: An Object-Oriented Problem-Solving Environment for Early Diagenesis. Computers and Geosciences. 2003. Vol. 29, iss. 3. P. 301−318. https://doi.org/10.1016/S0098-3004(03)00007-4
  4. Ignat'eva, O.G., Ovsyanyi, E.I., Romanov, A.S., Konovalov, S.K. and Orekhova, N.A., 2008. Analysis of State of t he Carbonate System of Waters and Variations of the Content of Organic Carbon in Bottom Sediments of the Sevastopol Bay in 1998–2005. Physical Oceanography, 18(2), pp. 96–105. doi:10.1007/s11110-008-9010-x
  5. Ivanov, V.A., Ovsyany, E.I., Repetin, L.N., Romanov, A.S. and Ignatyeva, O.G., 2006. Hydrological and Hydrochemical Regime of the Sebastopol Bay and Its Changing under Influence of Climatic and Anthropogenic Factors. Sevastopol: MHI, 90 p. (in Russian).
  6. Orekhova, N.A. and Varenik, A.V., 2018. Current Hydrochemical Regime of the Sevastopol Bay. Physical Oceanography, 25(2), pp. 124–135. doi:10.22449/1573-160X-2018-2-124-135
  7. Gurov, K.I. and Kotelyanets, E.A., 2022. Distribution of Trace Metals (Cr, Сu, Ni, Pb, Zn, Sr, Ti, Mn and Fе) in the Vertical Section of Bottom Sediments in the Sevastopol Bay (Black Sea). Physical Oceanography, 29(5), pp. 491–507. doi:10.22449/1573-160X-2022-5-491-507
  8. Svishchev, S.V., Kondrat'ev, S.I. and Konovalov, S.K., 2011. Regularities of Seasonal Variations in the Content and Distribution of Oxygen in Waters of the Sevastopol Bay. Physical Oceanography, 21(4), pp. 280–293. doi:10.1007/s11110-011-9122-6
  9. Moiseenko, O.G. and Orekhova, N.A., 2011. Investigation of the Mechanism of the Long-Term Evolution of the Carbon Cycle in the Ecosystem of the Sevastopol Bay. Physical Oceanography, 21(2), pp. 142–152. doi:10.1007/s11110-011-9111-9
  10. Orekhova, N.A., Medvedev, E.V. and Konovalov, S.K., 2016. Carbonate System Characteristics of the Sevastopol Bay Waters in 2009–2015. Physical Oceanography, (3), pp. 36–46. doi:10.22449/1573-160X-2016-3-36-46
  11. Ovsyaniy, E.I., Romanov, A.S. and Ignatieva, O.G., 2003. Distribution of Heavy Metals in Superficial Layer of Bottom Sediments of Sevastopol Bay (the Black Sea). Marine Ecological Journal, 2(2), pp. 85–93 (in Russian).
  12. Romanov, A.S., Orekhova, N.A., Ignatyeva, O.G., Konovalov, S.K. and Ovsyany, E.I., 2007. Influence of Physico-Chemical Characteristics of the Bottom Sediments on the Trace Elements’ Distribution by the Example of Sevastopol Bays (Black Sea). Ekologiya Morya = Ecology of the Sea, 73, pp. 85–90 (in Russian).
  13. Orekhova, N.A. and Konovalov, S.K., 2009. Polarography of the Bottom Sediments in the Sevastopol Bay. Physical Oceanography, 19(2), pp. 111–123. doi:10.1007/s11110-009-9038-6
  14. Soloveva, O.V. and Tikhonova, E.A., 2018. The Organic Matter Content Dynamics in the Sea Bottom Sediments of the Sevastopol Harbor Water Area. Scientific Notes of V.I. Vernadsky Crimean Federal University. Biology. Chemistry, 4(4), pp. 196–206 (in Russian).
  15. Malakhova, L.V., Egorov, V.N., Malakhova, T.V., Lobko, V.V., Murashova, A.I. and Bobko, N.I., 2020. Organochlorine Compounds Content in the Components of the Black River Ecosystem and Assessment of their Inflow to the Sevastopol Bay in the Winter Season 2020. International Journal of Applied and Fundamental Research, (5), pp. 7–14 (in Russian).
  16. Orekhova, N.A., Konovalov, S.K. and Medvedev, E.V., 2019. Features of Inorganic Carbon Regional Balance in Marine Ecosystems under Anthropogenic Pressure. Physical Oceanography, 26(3), pp. 225–235. doi:10.22449/1573-160X-2019-3-225-235
  17. Yakushev, E.V., Pollehne, F., Jost, G., Kuznetsov, I., Schneider, B. and Umlauf, L., 2007. Analysis of the Water Column Oxic/Anoxic Interface in the Black and Baltic Seas with a Numerical Model. Marine Chemistry, 107(3), pp. 388–410. doi:10.1016/j.marchem.2007.06.003
  18. Pakhomova, S., Vinogradova, E., Yakushev, E., Zatsepin, A., Shtereva, G., Chasovnikov, V. and Podymov, O., 2014. Interannual Variability of the Black Sea Proper Oxygen and Nutrients Regime: The Role of Climatic and Anthropogenic Forcing. Estuarine, Coastal and Shelf Science, 140, pp. 134–145. doi:10.1016/j.ecss.2013.10.006
  19. Kubryakov, A.I., 2004. Application of the Nested Grids Method in Developing the System of Hydrophysical Fields Monitoring in the Coastal Regions of the Black Sea. In: MHI, 2004. Ekologicheskaya Bezopasnost' Pribrezhnoy i Shel'fovoy Zon i Kompleksnoe Ispol'zovanie Resursov Shel'fa [Ecological Safety of Coastal and Shelf Zones and Comprehensive Use of Shelf Resources]. Sevastopol: ECOSI-Gidrofizika. Iss. 11, pp. 31–50 (in Russian).
  20. Mikhailova, E.N. and Shapiro, N.B., 2005. Simulation of the Circulation and Space Structure of Thermohaline Fields in the Sevastopol Bay with Regard for the Actual External Data (Winter, 1997). Physical Oceanography, 15(2), pp. 118–132. doi:10.1007/s11110-005-0035-0
  21. Alekseev, D.V., Fomin, V.V., Ivancha, E.V., Kharitonova, L.V. and Cherkesov, L.V., 2012. Mathematical Simulation of Wind Waves in the Sevastopol Bay. Morskoy Gidrofizicheskiy Zhurnal, (1), pp. 75–84 (in Russian).
  22. Belokopytov, V.N., Kubryakov, A.I. and Pryakhina, S.F., 2019. Modelling of Water Pollution Propagation in the Sevastopol Bay. Physical Oceanography, 26(1), pp. 3–12. doi:10.22449/1573-160X-2019-1-3-12
  23. Ryabtsev, Yu.N. and Lemeshko, E.M., 2014. [Modelling of Sevastopol Bay Pollutant Distribution for Complex Ecological Monitoring]. In: MHI, 2014. Ekologicheskaya Bezopasnost' Pribrezhnoy i Shel'fovoy Zon i Kompleksnoe Ispol'zovanie Resursov Shel'fa [Ecological Safety of Coastal and Shelf Zones and Comprehensive Use of Shelf Resources]. Sevastopol: ECOSI-Gidrofizika. Iss. 28, pp. 165–171 (in Russian).
  24. Pavlova, E.V., Ovsjanyi, E.I. Gordina, A.D., Romanov, A.S. and Kemp, R.B., 1999. Modern State and Tendencies of Change in Sevastopol Bay Ecosystem. In: E. V. Pavlova and N. V. Shadrin, eds., 1999. Sevastopol Aquatory and Coast: Ecosystem Processes and Services for Human Society. Sevastopol: Akvavita Publ., pp. 70–94 (in Russian).
  25. Ovsyany, E.J., Romanov, A.S., Min'kovskaya, R.Ya., Krasnovid, I.I., Ozyumenko, B.A. and Zymbal, I.M., 2001. Basic Polluting Sources of Sea near Sevastopol. In: MHI, 2001. Ekologicheskaya Bezopasnost' Pribrezhnoy i Shel'fovoy Zon i Kompleksnoe Ispol'zovanie Resursov Shel'fa [Ecological Safety of Coastal and Shelf Zones and Comprehensive Use of Shelf Resources]. Sevastopol: ECOSI-Gidrofizika. Iss. 2, pp. 138–152 (in Russian).
  26. Osadchaya, T.S., Alyomov, S.V. and Shadrina, T.V., 2004. Ecological Quality of Sevastopol Bay Borrom Sediments: Retrospective and Present-Day State. Ekologiya Morya = Ecology of the Sea, 66, pp. 82–87 (in Russian).
  27. Minkina, N.I., Samyshev, E.Z. and Kopytov, Yu.P., 2015. Long-Term Changes of Level of Contamination and Development of Plankton in the Sevastopol Bay. Monitoring Systems of Environment, (1), pp. 82–93 (in Russian).
  28. Sovga, E.E., Mezentseva, I.V. and Khmara, T.V., 2022. Simulation of Seasonal Hydrodynamic Regime in the Sevastopol Bay and of Assessment of te Self-Purification Capacity of its Ecosystem. Fundamentalnaya i Prikladnaya Gidrofizika, 15(2), pp. 110–123. doi:10.48612/fpg/92ge-ahz6-n2pt (in Russian).
  29. Bersen'eva, G.P. and Gevoriz, N.S., 2003. Variability of Chlorophyll abd Pheophytin Concentrations in the Phytoplankton of the Sevastopol Bay during 2000–2001. In: MHI, 2003. Ekologicheskaya Bezopasnost' Pribrezhnoy i Shel'fovoy Zon i Kompleksnoe Ispol'zovanie Resursov Shel'fa [Ecological Safety of Coastal and Shelf Zones and Comprehensive Use of Shelf Resources]. Sevastopol: ECOSI-Gidrofizika. Iss. 8, pp. 90–97 (in Russian).
  30. Eremeev, V.N., Konovalov, S.K. and Romanov, A.S., 1998.The Distribution of Oxygen and Hydrogen Sulfide in Black Sea Waters during Winter-Spring Period. Physical Oceanography, 9(4), pp. 259–272. doi:10.1007/BF02522712
  31. Weiss, R.F., 1970. The Solubility of Nitrogen, Oxygen and Argon in Water and Seawater. Deep Sea Research and Oceanographic Abstracts, 17(4), pp. 721–735. doi:10.1016/0011-7471(70)90037-9
  32. Brendel, P.J. and Luther III, G.W., 1995. Development of a Gold Amalgam Voltammetric Microelectrode for the Determination of Dissolved Fe, Mn, O2, and S(-II) in Pore Waters of Marine and Freshwater Sediments. Environmental Science and Technology, 29(3), pp. 751–761. doi:10.1021/es00003a024
  33. Luther III, G.W., Brendel, P.J., Lewis, B.L., Sundby, B., Lefrançois, L., Silverberg, N. and Nuzzio, D.B., 1998. Simultaneous Measurement of O2, Mn, Fe, I, and S (–II) in Marine Pore Waters with a Solid-State Voltammetric Microelectrode. Limnology and Oceanography, 43(2), pp. 325–333. doi:10.4319/lo.1998.43.2.0325
  34. Zabegaev, I.A., Shul'gin, V.F. and Orekhova, N.A., 2021. Application of Instrumental Methods for Analysis of Bottom Sediments for Ecological Monitoring of Marine Ecosystems. Scientific Notes of V.I. Vernadsky Crimean Federal University. Biology. Chemistry, 7(4), pp. 242–254 (in Russian).
  35. Yakushev, E.V., Protsenko, E.A., Bruggeman, J., Wallhead, P., Pakhomova, S.V., Yakubov, Sh.Kh., Bellerby, R.G.J. and Couture, R.-M., 2017. Bottom RedOx Model (BROM v.1.1): a Coupled Benthic–Pelagic Model for Simulation of Water and Sediment Biogeochemistry. Geoscientific Model Development, 10(1), pp. 453–482. doi:10.5194/gmd-10-453-2017
  36. Yakushev, E.V., Wallhead, P., Renaud, P.E., Illinskaya, A., Protsenko, E., Yakubov, Sh., Pakhomova, S., Sweetman, A.K., Dunlop, K., Berezina, A., Bellerby, R.G.J. and Dale, T., 2020. Understanding the Biogeochemical Impacts of Fish Farms Using a Benthic-Pelagic Model. Water, 12(9), 2384. doi:10.3390/w12092384
  37. He, Y., Stanev, E.V., Yakushev, E.V. and Staneva, J., 2012. Black Sea Biogeochemistry: Response to Decadal Atmospheric Variability during 1960–2000 Inferred from Numerical Modeling. Marine Environmental Research, 77, pp. 90–102. doi:10.1016/j.marenvres.2012.02.007
  38. Stanev, E.V., He, Y., Staneva, J. and Yakushev, E., 2014. Mixing in the Black Sea Detected from the Temporal and Spatial Variability of Oxygen and Sulfide – Argo Float Observations and Numerical Modelling. Biogeosciences, 11(20), pp. 5707–5732. doi:10.5194/bg-11-5707-2014
  39. Yakushev, E., Pakhomova, S., Sørenson, K. and Skei, J., 2009. Importance of the Different Manganese Species in the Formation of Water Column Redox Zones: Observations and Modeling. Marine Chemistry, 117(1–4), pp. 59–70. doi:10.1016/j.marchem.2009.09.007
  40. Yakushev, E.V., Pollehne, F., Günter, J., Kuznetsov, I., Schneider, B. and Umlauf, L., 2007. Redox Layer Model (ROLM):A Tool for Analysis of the Water Column Oxic/Anoxic Interface Processes. Meereswissenschaftliche Berichte, no. 68. Warnemünde, 59 p. doi:10.12754/msr-2007-0068
  41. Yakushev, E.V., Kuznetsov, I.S., Podymov, O.I., Burchard, H., Neumann, T. and Pollehne, F., 2011. Modeling the Influence of Oxygenated Inflows on the Biogeochemical Structure of the Gotland Sea, Central Baltic Sea: Changes in the Distribution of Manganese. Computers and Geosciences, 37(4), pp. 398–409. doi:10.1016/j.cageo.2011.01.001
  42. Yakushev, E.V., ed., 2013. Chemical Structure of Pelagic Redox Interfaces: Observation and Modeling. Berlin: Springer, 290 p. doi:10.1007/978-3-642-32125-2

Full text

English version (PDF)

Russian version (PDF)