Effect of Bicomponent ZnO-ZnFe2O4 Nanoparticles on Mediterranean Mussel (Mytilus galloprovincialis) Hemocytes under in vitro Conditions

M. S. Podolskaya1, *, A. A. Tkachuk1, A. Yu. Andreyeva1, E. S. Kladchenko1, E. S. Chelebieva1, A. A. Mosunov2

1 A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Sevastopol, Russia

2 Sevastopol State University, Sevastopol, Russia

* e-mail: podolskaya_m99@bk.ru

Abstract

The present work investigates the toxic effect of bicomponent ZnO-ZnFe2O4 nanoparticles, which are the main active component of the domestic antifouling coating, on marker indicators of Mediterranean mussel (Mytilus galloprovincialis) hemolymph cells (hemocytes) under in vitro experimental conditions. The following indicators were evaluated: mortality, cellular composition and production of reactive oxygen species. In the experiment, hemocytes were incubated for 1 and 2 hours in 1 mL of sterile seawater containing nanoparticles of different concentrations: 0.03, 0.3 and 3 mg/mL. The data were analyzed using the flowing cytometry. It was shown that ZnО-ZnFe2O4 nanoparticles had an effect on the cellular composition of the hemolymph: the proportion of agranulocytes decreased and hour exposure to 0.03 mg/mL nanoparticles reduced the level of production of reactive oxygen species by 2.5 times compared to the control (p ≤ 0.05). Incubation of hemocytes with a maximum concentration of nanoparticles (3 mg/mL) led to cell death within 1 hour after exposure. No acute toxic effects on hemocytes with the use of 0.03 mg/mL and 0.3 mg/mL of zinc oxide and zinc ferrite nanoparticles were observed.

Keywords

nanoparticles, Mediterranean mussel, hemocytes, reactive oxygen species

Acknowledgments

The synthesis of nanoparticles (ZnO-ZnFe2O4) was carried out under RSF project no. 21-13-00498 “Environmentally safe and highly effective antifouling coatings based on bicomponent metal nanoparticles and their oxides”. Assessment of the toxicity of nanoparticles on the body of mussels (analysis of hemocyte parameters) was carried out at the expense of the state task of FRC IBSS No. 121102500161-4 “Patterns of the organization of the immune system of commercial hydrobionts and the study of the influence of environmental factors on the functioning of their protective systems”.

For citation

Podolskaya, M.S., Tkachuk, A.A., Andreyeva, A.Yu., Kladchenko, E.S., Chelebieva, E.S. and Mosunov, A.A., 2023. Effect of Bicomponent ZnO-ZnFe2O4 Nanoparticles on Mediterranean Mussel (Mytilus galloprovincialis) Hemocytes under in vitro Conditions. Ecological Safety of Coastal and Shelf Zones of Sea, (1), pp. 124–136. doi:10.29039/2413-5577-2023-124-136

DOI

10.29039/2413-5577-2023-124-136

References

  1. Zvyagintsev, A.Y., Poltarukha, O.P. and Maslennikov, S.I., 2015. Fouling on Technical Water Supply Marine Systems and Protection Method Analysis of Fouling on Water Con-duits (Analitical Review). Water: Chemistry and Ecology, (1), pp. 30–51 (in Russian).
  2. Abacharaev, M.M. and Abacharaev, I.M., 2011. Perspective Developments on Marine Fouling Control. Vestnik of Astrakhan State Technical University. Series: Marine engineering and technologies, (3), pp. 7–9 (in Russian).
  3. Zvyagintsev, A.Yu., 2005. Marine Fouling in the North-West Part of Pasific Ocean. Vladivostok: Dalnauka, 432 p. (in Russian).
  4. Nurioglu, A.G., Esteves, A.C.C. and de With, G., 2015. Non-Toxic, Non-Biocide-Release Antifouling Coatings Based on Molecular Structure Design for Marine Applications. Journal of Materials Chemistry B, 3(32), pp. 6547–6570. doi:10.1039/C5TB00232J
  5. Castritsi-Catharios, J., Alambritis, G., Miliou, H., Cotou, E. and Zouganelis, G., 2014. Comparative Toxicity of “Tin Free” Self-Polishing Copolymer Antifouling Paints and Their Inhibitory Effects on Larval Development of a Non-Target Organism. Materials Sciences and Applications, 5, pp. 158–169. doi:10.4236/msa.2014.53020
  6. Meador, J.P., 2000. Predicting the Fate and Effects of Tributyltin in Marine Systems. In: G. W. Ware, ed., 2000. Reviews of Environmental Contamination and Toxicology. New York: Springer. Vol. 166, pp. 1–48.
  7. Legg, M., Yücel, M.K., Garcia de Carellan, I., Kappatos, V., Selcuk, C. and Gan, T.H., 2015. Acoustic Methods for Biofouling Control: A Review. Ocean Engineering, 103, pp. 237–247. doi:10.1016/j.oceaneng.2015.04.070
  8. Shanmugasundaram, T., Radhakrishnan, M., Gopikrishnan, V., Pazhanimurugan, R. and Balagurunathan, R., 2013. A Study of the Bactericidal, Anti-Biofouling, Cytotoxic and Antioxidant Properties of Actinobacterially Synthesised Silver Nanoparticles. Colloids and Surfaces B: Biointerfaces, 111, pp. 680–687. doi:10.1016/j.colsurfb.2013.06.045
  9. Lozhkomoev, A.S., Bakina, O.V., Glazkova, E.A., Svarovskaya, N.V. and Lerner, M.I., 2018. Patterns of the Formation of Antimicrobial Micro/Nanocomposites during the Oxidation of Bimetallic Al/Zn Nanoparticles. Russian Journal of Physical Chemistry A, 92(12), pp. 2530–2534. doi:10.1134/S0036024418120270
  10. Palza, H., 2015. Antimicrobial Polymers with Metal Nanoparticles. International Journal of Molecular Sciences, 16(1), pp. 2099–2116. doi:10.3390/ijms16012099
  11. Hoshyar, N., Gray, S., Han, H. and Bao, G., 2016. The Effect of Nanoparticle Size on in vivo Pharmacokinetics and Cellular Interaction. Nanomedicine, 11(6), pp. 673–692. doi:10.2217/nnm.16.5
  12. Hu, W., Culloty, S., Darmody, G., Lynch, S., Davenport, J., Ramirez-Garcia, S., Dawson, K.A., Lynch, I., Blasco, J. et al., 2014. Toxicity of Copper Oxide Nanoparticles in the Blue Mussel, Mytilus edulis: a Redox Proteomic Investigation. Chemosphere, 108, pp. 289–299. doi:10.1016/j.chemosphere.2014.01.054
  13. Xia, T., Kovochich, M., Brant, J., Hotze, M., Senpf, J., Oberley, T., Sioutas, C., Yeh, J.I., Wiesner, A.E. et al., 2006. Comparison of the Abilities of Ambient and Manufactured Nanoparticles to Induce Cellular Toxicity according to an Oxidative Stress Paradigm. Nano Letters, 6(8), pp. 1794–1807. doi:10.1021/nl061025k
  14. Hsin, Y.-H., Chen, C.-F., Huang, S., Shih, T.-S., Lai, P.-S. and Chueh, P.J., 2008. The Apoptotic Effect of Nanosilver is Mediated by a ROS-and JNK-Dependent Mechanism Involving the Mitochondrial Pathway in NIH3T3 Cells. Toxicology Letters, 179(3), pp. 130–139. doi:10.1016/j.toxlet.2008.04.015
  15. Svarovskaya, N.V., Bakina, O.V., Glazkova, E.A., Lerner, M.I., Lozhkomoev, A.S., Serova, A.N. and Khorobraya, E.G., 2013. Evaluation of the Toxicity of Nanostructural Aluminium Oxyhydroxide with the Help of Hydrobionts Svarovskaya. Chemistry for Sustainable Development, 21(4), pp. 411–414. Available at: https://sibran.ru/en/journals/issue.php?ID=150645&ARTICLE_ID=150654 [Accessed: 18 February 2023].
  16. Zhu, X., Wang, J., Zhang, X., Chang, Y. and Chen, Y., 2010. Trophic Transfer of TiO2 Nanoparticles from Daphnia to Zebrafish in a Simplified Freshwater Food Chain. Chemosphere, 79(9), pp. 928–933. doi:10.1016/j.chemosphere.2010.03.022
  17. Miller, R.J., Lenihan, H.S., Muller, E.B., Tseng, N., Hanna, S.K. and Keller, A.A., 2010. Impacts of Metal Oxide Nanoparticles on Marine Phytoplankton. Environmental Science and Technology, 44(19), pp. 7329–7334. doi:10.1021/es100247x
  18. Cong, Y., Jin, F., Wang, J. and Mu, J., 2017. The Embryotoxicity of ZnO Nanoparticles to Marine Medaka, Oryzias melastigma. Aquatic Toxicology, 185, pp. 11–18. doi:10.1016/j.aquatox.2017.01.006
  19. Allahverdiyev, A.M., Abamor, E.S., Bagirova, M. and Rafailovich, M., 2011. Antimicrobial Effects of TiO2 and Ag2O Nanoparticles against Drug-Resistant Bacteria and Leishmania Parasites. Future Microbiology, 6(8), pp. 933–940. doi:10.2217/fmb.11.78
  20. Mosunov, A.A. and Evstigneev, V.P., 2021. Nanoparticles in Marine Antifouling Coatings: a Case Study. Journal of Physics: Conference Series, 2094(2), 022041. doi:10.1088/1742-6596/2094/2/022041
  21. Bakina, O., Glazkova, E., Rodkevich, N., Mosunov, A., Chzhou, V. and Lerner, M., 2022. Electroexplosive Synthesis of Composite ZnO/ZnFe2O4/Zn Nanoparticles with Photocatalytic and Antibacterial Activity. Materials Science in Semiconductor Processing, 152, 107076. doi:10.1016/j.mssp.2022.107076
  22. Canesi, L., Ciacci, C., Betti, M., Fabbri, R., Canonico, B., Fantinati, A., Marcomini, A. and Pojana, G., 2008. Immunotoxicity of Carbon Black Nanoparticles to Blue Mussel Hemocytes. Environment International, 34(8), pp. 1114–1119. doi:10.1016/j.envint.2008.04.002
  23. Andreyeva, A.Y., Kladchenko, E.S., Kukhareva, T.A. and Sakhon, E.G., 2019. Analysis of Cell Cycle and Morphological and Functional Abnormalities of Mytilus galloprovincialis Lam., 1819 (Bivalvia) Hemocytes from Coastal Ecosystems near Sevastopol, Crimea. Inland Water Biology, 12(2), pp. 96–103. doi:10.1134/S1995082919060038
  24. Canesi, L., Gallo, G., Gavioli, M. and Pruzzo, C., 2002. Bacteria–Hemocyte Interactions and Phagocytosis in Marine Bivalves. Microscopy Research and Technique, 57(6), pp. 469–476. doi:10.1002/jemt.10100
  25. Koutsogiannaki, S. and Kaloyianni, M., 2010. Signaling Molecules Involved in Immune Responses in Mussels. Invertebrate Survival Journal, 7(1), pp. 11–21. Available at: https://www.isj.unimore.it/index.php/ISJ/article/view/204/119 [Accessed: 18 February 2023].
  26. Tiscar, P.G. and Mosca, F., 2004. Defense Mechanisms in Farmed Marine Molluscs. Veterinary Research Communications, 28(suppl. 1), pp. 57–62. doi:10.1023/B:VERC.0000045379.78547.23
  27. Jovanović, B. and Palić, D., 2012. Immunotoxicology of Non-Functionalized Engineered Nanoparticles in Aquatic Organisms with Special Emphasis on Fish–Review of Current Knowledge, Gap Identification, and Call for Further Research. Aquatic Toxicology, 118, pp. 141–151. doi:10.1016/j.aquatox.2012.04.005
  28. Chalew, T.E.A., Galloway, J.F. and Graczyk, T.K., 2012. Pilot Study on Effects of Nanoparticle Exposure on Crassostrea virginica Hemocyte Phagocytosis. Marine Pollution Bulletin, 64(10), pp. 2251–2253. doi:10.1016/j.marpolbul.2012.06.026
  29. Dayem, A.A., Hossain, M.K., Lee, S.B., Kim, K., Saha, S.K., Yang, G.-M., Choi, H.Y. and Cho, S.-G., 2017. The Role of Reactive Oxygen Species (ROS) in the Biological Activities of Metallic Nanoparticles. International Journal of Molecular Sciences, 18(1), 120. doi:10.3390/ijms18010120
  30. Sokolova, I.M., 2013. Energy-Limited Tolerance to Stress as a Conceptual Framework to Integrate the Effects of Multiple Stressors. Integrative and Comparative Biology, 53(4), pp. 597–608. doi:10.1093/icb/ict028
  31. Barmo, C., Ciacci, C., Canonico, B., Fabbri, R., Cortese, K., Balbi, T., Marcomini, A., Pojana, G., Gallo, G. et al., 2013. In Vivo Effects of n-TiO2 on Digestive Gland and Immune Function of the Marine Bivalve Mytilus galloprovincialis. Aquatic Toxicology, 132–133, pp. 9–18. doi:10.1016/j.aquatox.2013.01.014
  32. Donaghy, L., Lambert, C., Choi, K.-S. and Soudant, P., 2009. Hemocytes of the Carpet Shell Clam (Ruditapes decussatus) and the Manila Clam (Ruditapes philippinarum): Current Knowledge and Future Prospects. Aquaculture, 297(1–4), pp. 10–24. doi:10.1016/j.aquaculture.2009.09.003
  33. Starkov, A.A., 2008. The Role of Mitochondria in Reactive Oxygen Species Metabolism and Signaling. Annals of the New York Academy of Sciences, 1147(1), pp. 37–52. doi:10.1196/annals.1427.015
  34. Wang, T., Huang, X., Jiang, X., Hu, M., Huang, W. and Wang, Y., 2019. Differential in vivo Hemocyte Responses to Nano Titanium Dioxide in Mussels: Effects of Particle Size. Aquatic Toxicology, 212, pp. 28–36. doi:10.1016/j.aquatox.2019.04.012
  35. Davies, L.C., Rice, C.M., McVicar, D.W. and Weiss, J.M., 2019. Diversity and Environmental Adaptation of Phagocytic Cell Metabolism. Journal of Leukocyte Biology, 105(1), pp. 37–48. doi.org/10.1002/JLB.4RI0518-195R
  36. Canesi, L., Ciacci, C., Gallo, G., Marcomini, A. and Pojana, G., 2010. In vitro Effects of Suspensions of Selected Nanoparticles (C60 fullerene, TiO2, SiO2) on Mytilus Hemocytes. Aquatic Toxicology, 96(2), pp. 151–158. doi:10.1016/j.aquatox.2009.10.017

Full text

English version (PDF)

Russian version (PDF)