Chemical Composition of Mussel Mytilus galloprovincialis Cultivated at the Seashore of Sevastopol (Black Sea)

N. V. Pospelova*, A. S. Priimak, V. I. Ryabushko

A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Sevastopol, Russia

*e-mail: nvpospelova@mail.ru

Abstract

Mytilus galloprovincialis is cultivated at the mussel-oyster farm at the seashore of Sevastopol (Black Sea). The hydrochemical and hydrobiological conditions of this water area are too favourable enough to maintain the seafarm, therefore it is of great economical importance for our region. Sustainable development of aquaculture is based on producing qualitative and harmless food. A lot of harmful for human health elements (including heavy metals) can be accumulated in mussels. Some of them are essential in low concentrations and toxic in extra-increased values. The concentration of heavy metals in mollusks indicates their availability for living organisms which is important in terms of using bivalves as a food source. That is why information on bioaccumulation of pollutants by bivalves is required at the regional level. The aim of this work is to determine the concentration of trace elements Hg, Cd, Pb, Cr, Ni, As, Cu, Zn in tissues and shells of mussel cultivating at the seashore of Sevastopol. The average trace metals concentration in tissues of mussels with commercial value (>50 mm) didn’t exceed threshold limit value (TLV) excluding As. The concentration of As was 2.2 times more than TLV. Generally the concentration of elements in tissues is looked as: Zn > Mn > Cu > As > Cd, Pb, Co > Ni > Hg. The concentration of elements in mussels’ shells is looked as: Zn > Co > Mn > Cu, As, Pb, Ni > Cd > Hg. It is noticed that using mussels of different size groups for indication the level of water pollution or biotechnology is necessary.

Keywords

metals, arsenic, cultivated mussels, Mytilus galloprovincialis, Black Sea

Acknowledgments

The study was funded by the Russian Foundation for Basic Research and the Government of Sevastopol (project number 20-44-925001), and also by the Ministry of Science and Higher Education of the Russian Federation (grant no. 121030300149-0).

For citation

Pospelova, N.V., Priimak, A.S. and Ryabushko, V.I., 2021. Chemical Composition of Mussel Mytilus galloprovincialis Cultivated at the Seashore of Sevastopol (Black Sea). Ecological Safety of Coastal and Shelf Zones of Sea, (4), pp. 67–80. doi:10.22449/2413-5577-2021-4-67-80 (in Russian).

DOI

10.22449/2413-5577-2021-4-67-80

References

  1. Ryabushko, L.I., Pospelova, N.V., Balycheva, D.S., Kovrigina, N.P., Troshchenko, O.A. and Kapranov, S.V., 2017. Epizoon Microalgae of the Cultivated Mollusk Mytilus galloprovincialis Lam. 1819, Phytoplankton, Hydrological and Hydrochemical Characteristics in the Mussel-and-Oyster Farm Area (Sevastopol, Black Sea). Marine Biological Journal, 2(4), pp 67–83. doi:10.21072/mbj.2017.02.4.07
  2. Kapranov, S.V., Kovrigina, N.P., Troshchenko, O.A. and Rodionova, N.Yu., 2020. Long-Term Variations of Thermohaline and Hydrochemical Characteristics in the Mussel Farm Area in the Coastal Waters off Sevastopol (Black Sea) in 2001–2018. Continental Shelf Research, 206, 104185. doi:10.1016/j.csr.2020.104185
  3. Troshchenko, O.A., Subbotin, A.A. and Eremin, I.Yu., 2019. Variability of Main Limiting Environmental Factors in the Process of Bivalve Mollusk Cultivation at the Mussel Farm in Sevastopol. Scientific Notes of V.I. Vernadsky Crimean Federal University. Geography. Geology, 5(2), pp. 308–321 (in Russian).
  4. Pospelova, N.V. and Priimak, A.S., 2021. The Feeding of Mytilus galloprovincialis Lam. Cultivating in coastal waters of Sevastopol. Proceedings of the T.I. Vyazemsky Karadag Scientific Station – Nature Reserve of the RAS, (1), pp. 24–34. https://doi.org/10.21072/eco.2021.17.03 (in Russian).
  5. Mance, G., 1987. Pollution Threat of Heavy Metals in Aquatic Environments. Dordrecht: Springer, 372 p. https://doi.org/10.1007/978-94-009-3421-4
  6. Wang, W.X. and Lu, G., 2017. Heavy Metals in Bivalve Mollusks. In: D. Schrenk and A. Cartus, eds., 2017. Chemical Contaminants and Residues in Food (Second Edition). Woodhead Publishing, pp. 553–594. doi:10.1016/B978-0-08-100674-0.00021-7
  7. Stankovic, S. and Jovic, M., 2012. Health Risks of Heavy Metals in the Mediterranean Mussels as Seafood. Environmental Chemistry Letters, 10(2), pp. 119–130. doi:10.1007/s10311-011-0343-1
  8. Farrington, J.W., Tripp, B.W., Tanabe, S., Subramanian, A., Sericano, J.L., Wade, T.L. and Knap, A.H., 2016. Goldberg's Proposal of “the Mussel Watch”: Reflections after 40 Years / J. W. [et al.] // Marine Pollution Bulletin, 110(1), pp. 501–510. https://doi.org/10.1016/j.marpolbul.2016.05.074
  9. Kamel, N., Burgeot, T., Banni, M., Chalghaf, M., Devin, S., Minier, C. and Boussetta, H., 2014. Effects of Increasing Temperatures on Biomarker Responses and Accumulation of Hazardous Substances in Rope Mussels (Mytilus galloprovincialis) from Bizerte Lagoon. Environmental Science and Pollution Research, 21(9), pp. 6108–6123. doi:10.1007/s11356-014-2540-5
  10. Rouane-Hacene, O., Boutiba, Z., Belhaouari, B., Guibbolini-Sabatier, M. E., Francour, P. and Risso-de Faverney, C., 2015. Seasonal Assessment of Biological Indices, Bioaccumulation and Bioavailability of Heavy Metals in Mussels Mytilus galloprovincialis from Algerian West Coast, Applied to Environmental Monitoring. Oceanologia, 57(4), pp. 362–374. doi:10.1016/j.oceano.2015.07.004
  11. Azizi, G., Akodad, M., Baghour, M., Layachi, M. and Moumen, A., 2018. The Use of Mytilus spp. Mussels as Bioindicators of Heavy Metal Pollution in the Coastal Environment. A Review. Journal of Materials and Environmental Sciences, 9(4), pp. 1170–1181.
  12. Richir, J. and Gobert, S., 2014. The Effect of Size, Weight, Body Compartment, Sex and Reproductive Status on the Bioaccumulation of 19 Trace Elements in Rope-Grown Mytilus galloprovincialis. Ecological Indicators, 36, pp. 33–47. doi:10.1016/j.ecolind.2013.06.021
  13. Lu, G.-Y. and Wang, W.-X., 2018. Trace Metals and Macroelements in Mussels from Chinese Coastal Waters: National Spatial Patterns and Normalization. Science of the Total Environment, 626, pp. 307–318. doi:10.1016/j.scitotenv.2018.01.018
  14. Chernova, E.N., 2010. Changes in Trace Metal Concentrations in the Tissues of the White Sea Mussel Mytilus edulis over the Reproductive Cycle. Russian Journal of Marine Biology, 36(1), pp. 63–69. doi:10.1134/S1063074010010086
  15. Chelyadina, N.S. and Smirnova, L.L., 2019. Variation in Copper Content in the Cultivated Mussel Mytilus galloprovincialis Lam. Inland Water Biology, 12(3), pp. 365–369. doi:10.1134/S1995082919030040
  16. Saavedra, Y., González. A., Fernández. P. and Blanco, J., 2004. The Effect of Size on Trace Metal Levels in Raft Cultivated Mussels (Mytilus galloprovincialis). Science of the Total Environment. 318(1–3), pp. 115–24. doi:10.1016/S0048-9697(03)00402-9
  17. Álvarez, E., Fernández-Sanjurjo, M.J., Seco, N. and Núñez, A., 2012. Use of Mussel Shells as a Soil Amendment: Effects on Bulk and Rhizosphere Soil and Pasture Production. Pedosphere, 22(2), pp. 152–164. doi:10.1016/S1002-0160(12)60002-2
  18. Bityutskaya, O.E., 2019. [Classification of Methods of Complex Mussel Processing]. Izvestiya vysshih uchebnyh zavedenij. Pishchevaya tekhnologiya [Bulletin of Higher Education Institutions. Food Technology], 5–6 (371–372), pp. 9–15 (in Russian).
  19. Morris, J.P., Backeljau, T. and Chapelle, G., 2019. Shells from Aquaculture: a Valuable Biomaterial, not a Nuisance Waste Product. Reviews in Aquaculture, 11(1), pp. 42–57. doi:10.1111/raq.12225
  20. Suplicy, F.M., 2020. A Review of the Multiple Benefits of Mussel Farming. Reviews in Aquaculture, 12(1), pp. 204–223. doi:10.1111/raq.12313
  21. Kozintsev, A.F., 2006. Season Dynamics of the Heavy Metals Contents in Mussel (Mytilus galloprovincialis) from the Kazachjya Bay (the Black Sea). Marine Ecological Journal, 5(4), pp. 41–47 (in Russian).
  22. Demina, L.L. and Budko, D.M., 2014. Trace Metals in Carbonate Biomineralization by the Example of Bivalvia mytilus spp. From the Black Sea. Fundamental Research, (11–10), pp. 2185–2189 (in Russian).
  23. Pospelova, N.V., Chelyadina, N.S. and Smirnova, L.L., 2019. The Influence of Cultivated Musel Mytilus galloprovincialis Lam. 1819 on the Flow of Cu, Zn, Cd, Pb in Water Area of Musel Farm (Crimea, the Black Sea). Water: Chemistry and Ecology, (3–6), pp. 86–91 (in Russian).
  24. Ryabushko, V.I., Egorov, V.N., Kozintsev, A.F., Kostova, S.I. and Shinkarenko, V.K., 2002. Mercury in the Mussel Mytilus galloprovincialis Lam. from the Bays of he Crimean Peninsula of the Black Sea. Marine Ecological Journal, 1(1), pp. 9–107 (in Russian).
  25. Ryabushko, V.I., Kozintsev, A.F., Makarchuk, T.L. and Shinkarenko, V.K., 2002. [Heavy Metal Content in Mytilus galloprovincialis Lam. Mussels from the Kazachya Bay (Black Sea)] In: NAS of Ukraine, 2002. Mors'kі bіotekhnіchnі sistemi [Marine Biotechnical Systems]. Sevastopol, Iss. 2, pp. 215–221 (in Russian).
  26. Ryabushko, V.I. and Kozintsev, A.F., 2002. [Accumulation of Heavy Metals in ussels Cultivated in the Kazachya Bay (Black Sea)]. In: NAS of Ukraine, 2002. Mors'kі bіotekhnіchnі sistemi [Marine Biotechnical Systems]. Sevastopol, Iss. 2, pp. 22–230 (in Russian).
  27. Ryabushko, V.I., Kozintsev, A.F. and Toichkin, A.M., 2017. Concentration of Arsenic in the Tissues of Cultivated Mussel Mytilus galloprovincialis Lam., Water and Bottom Sediments (Crimea, Black Sea). Marine Biological Journal, 2(3), pp. 8–74. https://doi.org/10.21072/mbj.2017.02.3.06
  28. Ryabushko, V.I., Kozintsev, A.F. and Toichkin, A.M., 2017. Concentration of Arsenic in the Mussel Mytilus galloprovincialis Lam. 1819 from Crimean Peninsula Bays (Black Sea) // Water: Chemistry and Ecology, (10), pp. 30–36 (in Russian).
  29. Ryabushko, V.I., Kozintsev, A.F. and Toichkin, A.M., 2020. Spatial Distribution of Arsenic in the Coastal Areas of the Crimean Peninsula (the Black Sea and the Sea of Azov). Vestnik Moskovskogo Universiteta. Seria 5, Geografia, (4), pp. 14–20.
  30. Ryabushko, V.I., Kozintsev, A.F. and Toichkin, A.M., 2020. Arsenic Concentrations in the Karadag Nature Reserve Area (Black Sea) // Proceedings of the T.I. Vyazemsky Karadag Scientific Station – Nature Reserve of the RAS, 1(13), pp. 3–9 (in Russian).
  31. Mubiana, V.K., Vercauteren, K. and Blust, R., 2006. The Influence of Body Size, Condition Index and Tidal Exposure on the Variability in Metal Bioaccumulation in Mytilus edulis. Environmental Pollution, 144(1), pp. 272–279. doi:10.1016/j.envpol.2005.12.017
  32. Wang, W.-X. and Fisher, N.S., 1997. Modeling the Influence of Body Size on Trace Element Accumulation in the Mussel Mytilus edulis. Marine Ecology Progress Series, 161, pp. 103–115. doi:10.3354/meps161103
  33. Holodov, V.I., Pirkova, A.V. and Ladygina, L.V., 2017. Cultivation of Mussels and Oysters in the Black Sea. Voronezh: OOO “IZDAT-PRINT”, 508 p. (in Russian).
  34. Daskalakis, K.D., 1996. Variability of Metal Concentrations in Oyster Tissue and Implications to Biomonitoring. Marine Pollution Bulletin, 32(11), pp. 794–801. doi:10.1016/S0025-326X(96)00042-2
  35. Pirkova, A.V., Ladygina, L.V. and Shchurov, S.V., 2019. Formation of Settlements of Mussel Mytilus galloprovincialis (Lamarck, 1819) on Collectors of the Laspi Bay Farm Depending on Environmental Factors. Scientific Notes of V.I. Vernadsky Crimean Federal University. Biology. Chemistry, 5(1), pp. 92–106 (in Russian).

Full text

English version (PDF)

Russian version (PDF)