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Abstract

The paper considers the methodological issues of using the G03 parameterization to esti-
mate the vertical turbulent diffusion coefficient from current velocity and density stratifica-
tion data collected with a depth increment of 4 m. Based on the expedition materials ob-
tained during the 87" cruise of the R/V Professor Vodyanitsky (30 June to 18 July 2016)
in the central sector of the northern Black Sea, this coefficient was estimated at the upper
boundary of the cold intermediate layer and the depth layer of 350—390 m. The results of
measurements in the acoustic Doppler current profiler exposure mode near the sea surface
and at the lower sounding point were used as input data on the current velocity. In the upper
sea layer at a potential density of 14.2 kg/m’, the coefficient value was 7.26-10° m%s,
which is close to its value of 6:10° m%/s in the core of the cold intermediate layer estimated
from the thermal conductivity equation from the 2017 expedition measurements. The cor-
responding heat flux into the cold intermediate layer is 1.79 W/m®. An indirect estimate of
the coefficient in the seasonal thermocline was 2.26-10”7 m”/s. This value is comparable to
the molecular heat diffusion coefficient. Salt flux at a potential density value of 14.2 kg/m’
is 2,977 g/(m’-year), the corresponding salt transport through the isopycnal surface is
1.1-10" g/year, or about 22 % of the mass of salt brought into the Black Sea by the lower
Bosphorus current per year. In the layer of 350-390 m depth at a potential density value of
about 16.9 kg/m’, the estimated vertical turbulent diffusion coefficient was 2.66-10° m?/s.
The corresponding heat flux was 3.9-10° W/m? or about 10 % of the geothermal flux.
Salt flux of 4.110° g/(m?/s) corresponds to its transport of 3.9-10"° g/year through the iso-
pycnal surface and represents 0.75 % of the mass of salt brought by the lower Bosphorus
current per year. The ratio of the kinetic energy of small-scale processes to their potential
energy was found to be 1.53 for the near-surface layer and 11 for the lower sounding point.
This variability determines an almost threefold enhancement of vertical mixing at the upper
measurement point according to the GO3 parameterization
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AHHOTaANUA

PaccMmoTpeHBl MeTOIMYECKHEe BOIPOCH! HCIONb30BaHus mapameTpusanuu G03 mid oleHKH
K03 PHIeHTa BEPTHUKATFHON TypOYIeHTHOH OTUQQY3Un M0 JaHHBEIM O CKOPOCTH TCUCHUS
Y TUIOTHOCTHOH CTpaTH(UKALNK, COOpaHHBIM ¢ pa3pemeHneM 4 M no riayoune. Ha ocHose
OKCIIEAUIIMOHHBIX MaTepHajoB, moiay4deHHbIX B 87-m peiice HUC «IIpodeccop Bomsuun-
Kuit», npoxoausiieM ¢ 30 utoHs no 18 urosga 2016 r. B HEHTPaIbHOM CEKTOPE CEBEPHOI
yacTH UepHOro MOpsi, BBINOJHCHA OLEHKAa 3HAYEHHH 3TOro KO3 QHIMEHTa Ha BEpXHEH
TpaHUIIE XOJOJHOTO MPOMEXKYTOYHOro ciost u cioe riyoun 350-390 m. B xauecTBe Hc-
XOIHBIX TAHHBIX O CKOPOCTH TEUCHHMS OBLIM HCIIOIB30BAHBI PE3YJIbTATHl N3MEPEHUH B pe-
JKMME BBIJIEP)KKH aKyCTHYECKOTO JOIUICPOBCKOTO MPO(pHIOMETpa TEUCHUH Y TIOBEPXHOCTH
MOps U B HUXKHEH TOYKE 30HAMPOBaHMs. B BepxHEM ciioe MOps IIPYU NOTEHIUAIBHOM IUIOT-
HocTH 14.2 kr/m’ 3Hauenne kosddurmenta cocrasmio 7.26-10°° m%/c, uto GmM3KO K ero
3Hauennio 6-10°° M%/c B sIpe XOTOAHOrO MPOMEKYTOUHOTO CIIOS, OLCHEHHOMY H3 ypaBHe-
HUS TEIJIONPOBOJHOCTH IO pe3yabTaTaM u3MepeHuid sxkcneauuuid 2017 r. CooTBETCTBY10-
LU MOTOK TerJia B XOJOJHBIA POMEXYTOUHBIH cJloil paBeH 1.79 B1/Mm%. KocBennas OLIEH-
Ka K09QDUIMEHTa B CE30HHOM TEPMOKIMHE cocTaBiima 2.26-107 m*/c — 3HadeHHe, COMOC-
TaBUMOE ¢ KO3(PHUIHUEHTOM MOJNEKyIsipHOH nuddy3un Teria. [IoTok comu npu 3HAYEHUN
MOTEHIUAJILHOM TUIOTHOCTH 14.2 Kr/M° pasen 2977 F/(M2~FO,Zl), COOTBETCTBYIOILUN MEPEHOC
COJTH Yepe3 H30MMKHIYECKYo moBepxHocTh — 1.1-10" r/rox, mmm okomo 22 % Macchl o,
prHOCHMON B UepHoe Mope HIDKHEOOC(HOPCKHM TedeHueM 3a roj. B cioe riryoun 350-—
390 M npy 3HAYCHHH MOTEHIMAIBHON MIOTHOCTH 0KOI0 16.9 Kr/M’ onerKa k03dduIenTa
BEPTHKAIBHOI TypOyieHTHOH anbdysun coctasmia 2.66-10° m*/c. CooTBeTcTBYIONIHiIT
TOTOK Terma paser 3.9-10° Br/m”, wim oxono 10 % reotepmanbHOro noroka. [1oTok comu
4.1-10°° r/(M*-c) COOTBETCTBYET €€ MepeHOCy uepe3 M3OMUKHUIECKYIO TTOBEPXHOCTh B Pas3-
mepe 3.9-10" r/rox u cocrapisier 0.75 % OT MacChl COITH, MPHHOCHMO HIKHEG0CHOPCKIM
TEUEHHEM 32 TOZl. YCTAaHOBJIEHO OTHOIICHHWE KWHETHYECKOH SHEPrHM MEIKOMAacIITaOHBIX
MPOIIECCOB K MX TOTEHIMABHON SHEpruH, KoTopoe paBHO 1.53 g BepxHeEro cios H
11 mnst HIOKHEH TOYKM 30HAMPOBaHUA. Takas M3MEHYMBOCTH ONPEAEISIET MMOYTH TPEXKpPaT-
HOE€ YCUJICHHE BEPTHKAJIBLHOIO NEPEMEIINBAHKS B BEPXHEH TOUKE U3MEPEHUH B COOTBETCT-
BUU ¢ apamertpusamnuei GO3.

KawueBble ciaoBa: YepHoe MOpe, BEpTUKAIbHOE NEpPEMENIMBAHUE, CABUT CKOPOCTH
TEYEHUsI CKOPOCTh TEUEHMUSI, IOTOK TEIljIa, MOTOK COJIH
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Introduction

Vertical fluxes of heat, salt, nutrients and other substances in the Black Sea
water column have a significant impact on the functioning of the ecosystem of
the upper active layer and partly determine the efficiency of reproduction of its re-
sources used in the national economy (fishing, mussel farms, oyster plantations,
etc.). Basically, vertical exchange is carried out by means of turbulent mixing.
As aresult, the estimation of the vertical turbulent diffusion coefficient in the Black
Sea has been an urgent task of oceanology for many years " [1-7].

The range of coefficient values given in the literature for the Black Sea ex-
tends from values close to the molecular heat diffusion coefficient of ~10"" m*/s [3]
to the maximum value of 3-10° m*/s (in the work "). Such a large range of coeffi-
cient values is determined both by the difference in methods for its assessment, and
by the spatio-temporal difference in hydrophysical conditions and atmospheric
effects. At present, it is generally accepted that the value of the vertical turbulent
diffusion coefficient obtained from microstructural data is the most reliable [4].
However, the sources only state two cases of using microstructural probes
in the deep part of the Black Sea [3, 4], which give the values of the coefficient
in the upper stratified layer of the sea at the level of O(10®) m*/s. A small number
of this kind of data is due to the high cost of equipment, technological difficulties
in carrying out measurements and data processing. At the same time, synchronous
measurements of density and current velocity profiles performed with a small-scale
resolution are currently widespread and are often used to estimate the vertical tur-
bulent diffusion coefficient [6, 8—12].

From the summer of 2016 to the present day, the Marine Hydrophysical Insti-
tute has carried out more than 20 expeditions in the central sector of the northern
part of the Black Sea [13, 14], where both CTD measurements and measurements
of current velocity profiles using the Acoustic Doppler Current Profilers (ADCP)
were taken. The purpose of this work is to study the characteristics of small-scale
processes in the active layer of the Black Sea. The article discusses methodological
issues of applying the G03 parameterization [10, 11] for estimating the vertical tur-
bulent diffusion coefficient based on the data obtained as a result of ADCP expo-
sure near the sea surface and at the bottom of sounding. The measurement data are
used to estimate the heat and salt fluxes at the upper boundary of the cold interme-
diate layer [13] and at the lower boundary of the upper layer of shear baroclinic
currents [6, 15]. It is expected that the proposed approach to estimating the ver-
tical turbulent diffusion coefficient, applied to the entire array of data collected
during expeditions of recent years, will make it possible to assess the seasonal
variability of the intensity of vertical mixing at different depths in the active layer
of the Black Sea.

U Blatov, A.S., Bulgakov, N.P., Ivanov, V.A., Kosarev, A.N. and Tuzhilkin, V.S., 1984. Variability of
Hydrophysical Fields of the Black Sea. Leningrad: Gidrometeoizdat, 240 p. (in Russian).
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Data, instruments and methods

The expedition materials obtained during the 87" cruise of the R/V Professor
Vodyanitsky, which took place from 30.06.2016 to 8.07.2016 in the central sector
of the northern part of the Black Sea (31°-36.5°E, 43°-45°N), were used
in the article [16]. CTD measurements were performed using the SBE 911plus
probe, the results were interpolated to a grid with a step of 1 m. The current veloci-
ty profiles were measured using a lowered ADCP based on WHM300 manufac-
tured by RDI, depth resolution (») 4 m [17]. The total number of stations was 106.
The work used data from 65 stations taken at a sea depth of more than 400 m.
The current velocity vectors in the 30—60 m layer at these stations are shown
in Fig. 1. The stations were evenly located in the area of the Rim Current and out-
side it closer to the center of the sea. The sequence of measuring the current veloci-
ty profile included 3—5 min exposures of the instrument near the sea surface and
at the lower sounding point [14]. It is the data obtained during ADCP exposures
at these horizons that are analyzed in this work.

Density profiles (p = 1000 + o4, where oy is the potential density, kg/m’) were
previously subjected to low-frequency depth filtering using a triangular filter corre-
sponding to ADCP spatial averaging, transfer function H,pcp(k) = (sin(nbk)/(nbk))*
(k is the vertical wave number) [17]. Further, using linear interpolation, the density
values were determined at the horizons for measuring the current velocity.

Fig. 2 shows the initial data in the form of a scattering diagram: the buoyancy
frequency square is plotted along the abscissa (N* = (g/p)(Acy/Az), where g is the acce-
leration of gravity; Az is the depth increment (here — 4 m)); along the y-axis,
the squared shear of the current velocity according to the data ADCP
(SH* 4pcp = (AUIAz)* + (AVIAz)?, where U, V are the eastern and northern components
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Fig. 1. Schematic station layout in the 87th cruise of the R/V Professor

Vodyanitsky (arrows show current velocity vectors at the layer of 30—60 m)
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of the current velocity vector). Transfer function of differentiation at a finite depth
increment Hpi(k) = (sin(nAzk)/(nAzk))* [18]. Gray diamonds correspond to
the data obtained in the vicinity of the upper boundary of the cold intermediate
layer (density 14.2 + 0.15 kg/m®) when the device is exposed near the sea surface.
The number of readings is 256, the average depth of the isopycna with a potential
density of 14.2 kg/m’ is 44 m. The grey triangles correspond to the data collected
when the instrument was exposed at the lower probing point. The number of read-
ings is 566, the average density value is 16.9 kg/m’, the average depth is 369 m.
Black markers are average values (N* and (Sh*), where (...) is the operator of av-
eraging over all samples.

The solid black line corresponds to the critical value of the gradient Richard-
son number (Ri = N*/Sh?*), which is 0.25 [19]. At values of the Richardson number
less than the critical one, a linear instability of the shear flow can occur, leading to
the development of turbulence. It can be seen from the figure that in the initial data
set, all values of the Richardson number at the lower sounding point are greater
than the critical one, which can be perceived as the absence of turbulent mixing,
since the necessary condition for shear flow instability is not met. This is due to
the fact that the measurements were carried out with the spatial depth resolution
inherent in ADCP and, in addition, the derivatives were calculated at finite depth
increments. The vertical resolution of the shear measurement process, determined
by the weakening of the transfer function H,pcp- Hpir to a level of 3 dB, was about
12 m. It was shown in [20] that the enhancement of turbulence dissipation should
be associated with small values of the Richardson number obtained at vertical in-
crements of 3 m. At the same time, estimates of the value of the Richardson num-
ber on a 10-meter scale have little in common with the microstructure. In essence,
this means that turbulence is mainly generated at vertical scales that are smaller
than the vertical resolution with which our measurements were made.

The black dashed line represents the results of the ratio

1
Shiize = J‘FGM76 (N,k)-H spcp(k)- Hpi (k) - dk , where Fyne(N, k) — shear spectral
0
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density for the canonical spectrum of internal waves GM76 [21, 22], as given
in [23]. At the upper boundary of the cold intermediate layer { Sh2,,)=3.7-10° s

ShZi;. = 6.2-107° s, This confirms the fact that the intensity of internal waves

in the Black Sea is weaker than in oceanic conditions, for which the canonical
spectrum of GM76 was determined. For the ocean, there are two sources of
internal waves approximately equal in power: tides and wind [24], while
in the Black tide-free sea, the only source of internal waves is the wind [25].
At the lower point of the sounding, the average value of the squared measured shear

( SH2pep) = 5.5-10°° s72) slightly (10 %) exceeds the value of Sh2;,,, = 5-107 577,
which is a less expected result. Early parameterizations for estimating the vertical

turbulent diffusion coefficient from the data collected at fine-scale resolution
were based either on the Richardson number [26] or on the relationship

Kyoo((Sh2pep) ) Shize )2 [8], or on a more complex dependence on the Richardson

number and the probability of observing its value less than the critical one [27, 28].

Results and discussion

In the framework of this article, to estimate the coefficient of vertical turbulent
diffusion (Ky), the parameterization G03 [10] was used, which takes into account
the deviation of the spectrum of internal waves from the canonical form [9] and
the geographical location of the measurement area. The applied formulas for calcu-
lations are borrowed from [11]:

2

K= Ky Ser)_, -5 L)

GM 76
W)= PR TR T
. _ farccosh(N/f)
JfIN) = o arcCOSh(No/fw)7

where K, = 5-10° m?/s; fis the local inertial frequency at 44° N; fi, is the inertial
frequency at 30° N; Ny = 5.24-10° rad/s. The ratio of flow velocity shear to strain
variations (R,, — the shear/strain variance ratio), or the ratio of kinetic and potential
energy of small-scale processes, is defined as

(Siper)
RW = 2 2\’
(v )e2)
where (£2) = (82)/(N2)2 = ((Nz— Ngit )2>/(N2)2 is the mean square strain; Ngy is
the dependence characterizing stable features of density stratification.
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Lower boundary of the upper layer of shear baroclinic currents. Fig. 3 shows
some graphical material explaining the procedure for estimating the coefficient of
vertical turbulent diffusion and calculating the heat and salt fluxes based on
the data obtained at the lower point of sounding. Fig. 3, a shows the dependence of
the buoyancy frequency square on the difference between the measurement
depth and the isopycnal depth oy = 16.9 kg/m’ (D)4).The linear dependence
NZ, on distance was drawn by the least squares method (black line) and cha-
racterizes the stable state of density stratification. The normalized value of
deformation at Dygo = 0 (Sh2,.. ) = (£2)-(N*) ~ 5-10" rad?/s’, while the mean
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Fig. 3. Dependences of buoyancy frequency square (a); square of ADCP
shear (b); temperature (c); salinity (d) on the distance to isopicna oo = 16.9 kg/m’
in the range of 20 m. Crosses are for input data, black lines are for dependences
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(Sh2pcp) = 5.5-10°° s* (Fig. 3, b). The ratio of kinetic horizontal energy to poten-

tial energy R, = 11, which is close to the estimate of this parameter for the 250—
500 m layer in the Black Sea given in [5]. For spectrum GM76 R, = 3. A signifi-
cant difference in the values of the parameter is caused by the dominance of inter-
nal waves in the deep layers of the Black Sea near the inertial range [14, 29-31],
which are more pronounced in the horizontal current velocity than in the deforma-
tion of isopycnal surfaces. Values of the parameter R,, which is in the range of 8—14,
are also characteristic of the northern seas [32], and in some areas of the Atlan-
tic Ocean, R, reaches 100 [12]. The value of the function 4;(R,) =0.37, which is
~ 2.5 times less than that for the canonical spectrum GM76. The calculated value
of the coefficient K, = 2.66-10°° mz/s, which is only ~2 times less than modern
theoretical predictions [7], and ~ 60 times less than that given in earlier works [1, 2].

The salt flux was calculated from the ratio Fs,, = p-K;~Sz where S = 05/0z =
= 1.5-107 psu/m is the salinity derivative (S) with respect to depth (Fig. 3, d).
The corresponding value Fgy = 4.1:10° g/(m*s). Assuming that the area of
the horizontal section of the sea at a depth of 370 m is equal to 3-10° km® [33],
we find that the salt flux amounting to 3.9-10" g/year rises through it. The lower
Bosphorus current brings an average of 150 km’ (V) of Marble Sea water
with a salinity of about 34 psu [33] to the Black Sea, or about 5.1-10" g/year of
salt. Thus, through the isopycnal surface 65 = 16.9 kg/m’, the amount of salt, which
is 0.75 % of its inflow through the Bosphorus Strait against 35 % given in [3] rises.
In other words, to maintain the salt balance, it is necessary that less than one per-
cent of the salt brought by the lower Bosphorus current penetrate into the depth
layer of more than 350 m.

The heat flux was calculated from the relation Fye = p-Cy-K;-0,, where
Cy-=4.2-10° J/(°C-kg) is the heat capacity of water; 0, = 30/0z = 3.4-10* °C/m
is the derivative of potential temperature (0) with respect to depth (Fig. 3, ¢).
The corresponding value Fie, = 3.9-10° W/m?, which is about 10 % of the geo-
thermal heat flux (Fyeageo = 40 mW/m? [34, 35]). At an average water tem-
perature of the lower Bosphorus current of 14 °C, the Black Sea receives
Fteatosph = P-Cor(Tnr — To)- Vs = 9-10"° J/year, at Ty = 0 °C. Fiyeaus = 3.7-10'° J/year and
is transferred through the isopycnal surface with a potential density of 16.9 kg/m’,
which is about 0.41 % of the heat supplied with the lower Bosphorus current.

The almost twofold excess of the share of the salt flux (0.75 %) over the share of
the heat flux (0.41 %) can be explained by the difference in the processes of ex-
change of substances with the environment when the waters of the Marble Sea are
submerged to depths of more than 370 m. In particular, heat exchange occurs not
only with the surrounding aquatic environment, but also through the bottom surface.

Upper boundary of the cold intermediate layer. Calculation of the vertic-
al turbulent diffusion coefficient from the data obtained during ADCP exposure
near the sea surface was carried out according to a complicated procedure.
This is due to the fact that the characteristic scales of stable stratification
variability are close to the wvertical resolution of the measurements.
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The temperature and salinity profiles (Fig. 4, a) were obtained as a result of low-
frequency filtering of the initial data and were subsequently used to determine
the corresponding vertical derivatives. The largest number of measurements N
is observed in the vicinity of the local minimum of the buoyancy frequency
between the seasonal and permanent pycnocline at potential density values of
14.2 £ 0.15 kg/m® (256 readings in Fig. 4, a and b) [13]. In order to minimize
the influence of the final resolution of measurements on the determination of para-
meters (5°) and (N?), their calculation was made for several samples of initial data
falling into windows of different widths (Acg) with symmetrical boundaries rela-
tive to the value of potential density s = 14.2 kg/m’. In the calculation of (5%),
stable stratification was represented by a second-order polynomial (dashed line
in Fig. 4, b). The results of the determinations were well represented by linear de-
pendences obtained by the least squares method with a decrease in the sampling
window width from 0.35 to 0.15 kg/m’ (corresponding dashed lines in Fig. 4, c).
The lower threshold of the window width was determined from the condition
that the amount of initial data should be at least 100. Further in the calculations,
we used the values 8*(0) and N*(0) obtained from the linear dependences
at Acg = 0. The average value of the squared shear did not show any dependence
on the width of the sampling window. The measured value of the squared norma-
lized deformation was about 1.2 of its value for the spectrum of GM?76.
On the contrary, the measured value of the squared shear of the current velocity
(Fig. 4, d) is only about 0.6 of its value for the spectrum of GM76. The correspond-
ing ratio of the kinetic and potential energies of small-scale processes R, = 1.53,
which is almost two times less than its value for the spectrum of GM76. This can
be caused by the interaction of internal waves with vertical inhomogeneities of sta-
ble density stratification, which have characteristic scales close to the lengths of
internal waves. The function value 4,(R,) = 2.53 versus units for GM76 spectrum.
Geographic correction j = 1.55. Vertical turbulent diffusion coefficient
Ky =17.26-10° m*/s, which is quite close to its value (~ 6-10° m%s) in the core of
the cold intermediate layer at 6, = 14.5 kg/m’, calculated from the heat conduction
equation [13].

The heat flux through the isopycnal surface with a potential density of
14.2 kg/m® (Fheats2) Was 1.79 W/m?, which significantly exceeds the value of
the geothermal flux. At a qualitative level, it is obvious that the seasonal pyc-
nocline in the Black Sea weakens the exchange processes between the upper
homogeneous mixed layer and the water column, but quantitative estimates are
rarely given in the literature [36]. By equating the heat fluxes at the upper
boundary of the cold intermediate layer and in the seasonal pycnocline, we can
estimate the vertical turbulent mixing coefficient in the seasonal pycnocline
itself from the relation K,(12) =~ T.(14.2)/T.(12)-K,(14.2) = 2.26-107 m?/s.
The obtained value is close to the value of the heat molecular diffusion coeffi-
cient (k7 = 1.4-10”" m%/s). In essence, this means that in summer the heat flux
from the upper homogeneous mixed layer into the water column through
the seasonal thermocline is largely determined by molecular diffusion.
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The microstructural measurements taken in the Yellow Sea with similar parameters
of the pycnocline also showed values of the vertical turbulent diffusion coefficient
comparable to the molecular heat diffusion coefficient [37].

The salt flux through the isopycnal surface at the value of potential density
oo = 14.2 kg/m’ is equal to 2977 g/(m’year), which gives a salt transfer of
1.1-10" g/year. This is about 22 % of the salt flow brought into the Black Sea
by the lower Bosphorus current. A significant violation of the salt balance can be
explained by the seasonal variability of both the exchange through the Bosphorus
Strait [34] and the vertical turbulent diffusion coefficient [6].

Conclusion

The methodological issues of applying the GO3 parametrization for estimating
the vertical turbulent diffusion coefficient from the current velocity and stratifica-
tion data collected near the sea surface and at the lower point of sounding with
a small-scale resolution are considered.

For the upper boundary of the cold intermediate layer at a potential density of
14.2 kg/m’, the corresponding estimate of the coefficient was 7.26-10°° m?/s. This
is close to its value in the core of the cold intermediate layer (6-10° m*/s) obtained
from the heat transfer equation based on the results of several expeditions in 2017.
The corresponding vertical heat flux was 1.79 W/m®. The salt transfer through the
isopycnal surface with a potential density of 14.2 kg/m’ is 1.1-10"° g/year, or about
22 % of the mass of salt (5.1-10" g/year) brought into the Black Sea by the lower
Bosphorus current. An indirect estimate of the coefficient in the seasonal pycnoc-
line amounts to 2.26:10”7 m*/s and shows its comparability with the heat molecular
diffusion coefficient, which is in good agreement with the results of microstructural
measurements for similar conditions.

For the lower boundary of shear baroclinic flows at a potential density of
16.9 kg/m’, the estimate of the vertical turbulent diffusion coefficient was
2.66-10°° m%/s, which is almost half the size of the theoretical estimate. The corres-
ponding heat flux is 3.9:-107° W/m’, or ~10 % of the geothermal heat flux. A salt
flux of 4.1-10°° g/(m*s) corresponds to its transport through the isopycnal surface
in the amount of 3.9:-10" g/year and is 0.75% of the mass of salt brought by
the lower Bosphorus current per year.

One of the results of the presented work is the establishment of the ratio of
kinetic and potential energy of small-scale processes. Near the surface in the vicini-
ty of the isopycna with a potential density of 14.2 kg/m’, its value amounted
to 1.53 and 11 for the lower sounding point at a potential density of 16.9 kg/m’.
As a result, the value of the vertical turbulent diffusion coefficient at the surface
turned out to be three times higher than at the lower point of sounding, despite
the fact that the ratio of the buoyancy frequency square to the squared shear
in the lower layer is almost half the size.

The given estimates of the parameters are conditional, but nevertheless they
can be useful in discussing their values obtained by other methods, in particular,
from the results of numerical experiments.
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